CHECK FOR UNDERSTANDING

Read and study the lesson to answer each question.

1. **Choose** the equation for the graph.
 a. \(y = 2x \)
 b. \(y = x \)
 c. \(y = x - 1 \)
 d. \(y = 2x - 2 \)

2. **List** four ways to show the relationship between two variables.

3. **You Decide** Beatriz thinks \((1, -1)\) is a solution of \(y = 2x - 1\). Grace thinks it is **not** a solution. Who is correct? Explain your reasoning.

Grace: \(2(1) - 1 \neq -1\)

Guided Practice

4. \(y = 2x + 1 \)
5. \(y = 3x \)
6. \(y = -2x + 3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(2x + 1)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>2</td>
</tr>
</tbody>
</table>

Graph each equation. 7-10. See Answer Appendix.

7. \(y = 3x - 1 \)
8. \(y = x - 2 \)
9. \(y = -2x \)
10. \(y = 1.5x \)

11. **Money Matters** Angel earns $6 per hour at the Ice Cream Shop.

 a. Make a table that shows her total earnings for working 3, 6, and 9 hours.

 b. Write an equation in which \(x \) represents the number of hours and \(y \) represents Angel's total earnings.

 c. Graph the equation. a. c. See margin.

EXERCISES

Graph each equation. 12-23. See Answer Appendix.

12. \(y = 2x + 3 \)
13. \(y = 4x - 1 \)
14. \(y = 0.25x \)
15. \(y = 0.5x - 1 \)
16. \(y = x - 3 \)
17. \(y = -2x - 2 \)
18. \(y = -3x - 1 \)
19. \(y = x + 0.5 \)
20. \(y = 2x - 5 \)
21. \(y = 2x - 5 \)
22. \(y = 6x \)
23. \(y = 0.1x \)

Make a table of values for each sentence. Then write an equation. Let \(x \) represent the first number and \(y \) represent the second number.

24. The second number is three more than the first. \(y = x + 3 \)
25. The second number is twice the first. \(y = 2x \)
26. The second number is the product of \(-3\) and the first number. \(y = -3x \)
27. The sum of the numbers is 10. \(x + y = 10 \)

256 Chapter 6 Algebra: Exploring Equations and Functions

Reteaching the Lesson

Activity Provide groups of students with an ordered pair. Have them list several equations the ordered pair will satisfy. Repeat with other ordered pairs.

Error Analysis

Watch for students who confuse \(x \) and \(y \)-variables. Prevent by emphasizing the use of a table to list ordered pairs of \(x \) and \(y \)-values.