34. **Greeting Cards** The graph shows the average number of greeting cards purchased yearly by the average person in the United States. Let \(c \) represent the number of cards purchased by Americans ages 35 to 44.

a. Write an expression using \(c \) to represent the number of cards purchased by Americans ages 45 to 54. \(c + 11 \)

b. Which age group would be represented by the expression \(\frac{c}{2} \)? 19 to 24

j = 19

35. **Money Matters** A taxi company charges $1.50 per mile, plus a $10 fee. Suppose Eva can afford to spend $19 for a taxi ride from her apartment to the mall. Write and solve an equation to find the distance she can travel, so she will know whether to take this taxi or try to find a cheaper one.

36. **Critical Thinking** If \(x \) is an odd number, how would you represent the odd number immediately following it? \(x + 2 \)

37. **Algebra** Solve the equation \(2x + 6 = -20 \). (Lesson 6-3) \(-13\)

38. **Test Practice** Mark had several baseball cards. He sold 15 of the cards and had 46 cards left. To find the number of cards he started with, Mark wrote the equation \(c - 15 = 46 \). How many cards did Mark start with? (Lesson 6-1) B

A 690 B 61 C 31 D 26

39. Solve \(m - 6 = (-12) \). (Lesson 5-5) 18

40. **Geometry** Find the area of a parallelogram having a base of 2.3 centimeters and a height of 1.6 centimeters. (Lesson 1-7) 3.68 cm²

41. **Algebra** Evaluate \(b^2 \) if \(b = 3 \). (Lesson 1-4) 243

Mid-Chapter Self Test

Equation. Check your solution. (Lessons 6-1, 6-2, and 6-3)

1. \(x = 71 \)
2. \(s - 5 = -11 \)
3. \(z + 3.5 = 8.7 \)
4. \(y = 5 \)
5. \(1.5y = 18 \)
6. \(-24 = -6c \)
7. \(7 = -5 \)
8. \(5x + 11 = 25 \)
9. \(-9 = 6m + 16 \)

An airplane is flying at an altitude of 1,000 feet before it increases its altitude by 1,000 feet to avoid a thunderstorm. Write an expression for its new altitude. (Lesson 6-4) \(1,000 \)

Extending the Lesson

Activity At Milt's Sporting Goods store, bats cost $35 each, and gloves are $55 each. Write an algebraic expression for the total cost of \(x \) bats and \(y \) gloves. \(35x + 55y \)

Discuss examples of equipment another sports team might need, and write an algebraic expression for each total cost.